High-value Applications of Computer Vision in Oil and Gas (2023) - viso.ai (2023)

Computer Vision er en nøkkelteknologi for kunstig intelligens (AI) som raskt går inn i olje- og gassindustrien, og skaper betydelig potensial for innovasjon og vekst. I mange bransjer har AI allerede utløst betydelige endringer og transformert konkurransereglene. I stedet for å stole på tradisjonelle, menneskesentrerte prosesser, har bedrifter som mål å skape verdier ved å bruke AI-teknologi.

Ettersom AI endrer konkurransereglene, kappløper organisasjoner for å bygge opp interne kapasiteter, lage tilpassede AI-visjonsapplikasjoner og samle læring med tidlig bruk for å iterativt optimalisere og drive AI-teknologi i stor skala. I det følgende vil vi dekke:

  • Teknologitrender i industrien
  • Datasynsteknologi i olje og gass
  • Liste over topp AI vision-applikasjoner

Om oss:Viso.ai tilbyr ende-til-ende Computer Vision Infrastructure PlatformFull suite. Bransjeledere bruker den til raskt å bygge, levere og skalere sine datasynsapplikasjoner.Få en demo for bedriften din.

(Video) The Power of Big Oil Part One: Denial (full documentary) | FRONTLINE

High-value Applications of Computer Vision in Oil and Gas (2023) - viso.ai (1)

Teknologitrender for kunstig intelligens i olje og gass

Ny teknologi og gjennombrudd innen datasyn og Edge AI tillater svært skalerbar bruk av distribuertdatasynsapplikasjoner. Moderne edge computing og dyp læring flytter datasyn fra skyen til nettverkskanten.

Kombinasjonen av tingenes internett med maskinlæring på enheten gjør det mulig å behandle videostrømmene til distribuerte kameraer i sanntid, med høy beregningseffektivitet. Disse teknologiske fremskrittene gjør det mulig å bygge storskala dyplæringsapplikasjoner med et stort antall tilkoblede endepunkter (AIoT).

Som et resultat blir det mulig å bygge oppdragskritiske, storskala datasynssystemer med eksterne kameraer koblet til dataenheter. For å lære mer om Edge AI-teknologi, anbefaler jeg å lese artikkelen vårEdge AI – Driving Next-Gen AI-applikasjoner.

Sammenlignet med konvensjonelle IoT-sensorer og lavstrømsenheter, gir kameraer en kontaktløs metode som gir rik informasjon om komplekse objekter og situasjoner. Med datamaskiner som kan se, blir det mulig å automatisere menneskelige oppgaver og akselerere prosesser, øke driftseffektiviteten og redusere menneskelige feil eller subjektivitet.

High-value Applications of Computer Vision in Oil and Gas (2023) - viso.ai (2)

Adopsjon av datasyn i olje og gass

Selskaper innen olje og gass tar generelt i bruk AI-teknologier med hovedmålet å forbedre driftseffektiviteten gjennom industriell automasjon (Industry 4.0). Dette betyr vanligvis å akselerere prosesser og redusere operasjonell risiko.

De viktigste applikasjonstypene inkluderer:

  • Forutsigelse av vedlikehold og levetid
  • Overvåking av sikkerhet og samsvar
  • Pålitelighet, reduser forretningsavbrudd
  • Risikoevaluering, strukturell helseovervåking
  • Bærekraft og ressursoptimalisering
  • Ikke-destruktiv testing og inspeksjon
  • Analyser tretthet og korrosjon av systemer

I det følgende vil vi fremheve noen populære brukstilfeller av AI-syn mer detaljert.

(Video) Oil and Gas 101: Offshore Drilling at Woodside

Inspeksjon av olje eller gassrør i stor skala

Å vurdere storskala infrastruktursystemer for å bestemme deres tilstand og helsetilstand under idriftsatte eller ekstreme farehendelser utgjør store utfordringer for operatørene. Dyplæringstilnærminger utnytter datasynsmodeller for betinget vurdering av store systemer gjennom å trekke ut kritisk informasjon fra fjernmålingsdataene til kameraer.

For det første må det visuelle forhåndsbehandles på pikselnivå med tradisjonelle datasynsmetoder. Deretter, dyplæringsmodeller (f.eks.R-CNN) brukes for å evaluere tilstanden til forskjellige kritiske komponenter.Applikasjonseksperimenterdemonstrert at DL-modeller er i stand til raskt og nøyaktig å oppdage skadestedet og nivået. Derfor er det et høyt potensial for storskala olje/gassrørledningsvurdering i både romlig og midlertidig skala i forhold til konvensjonelle modeller.

Fjernovervåking av olje- og gassfelt

Sanntids overvåking av olje- og gassfelt med kameraer for å automatisere og digitalisere oljeutviklingssteder for vedlikehold av olje- og gassfelt til havs. Slike systemer tar sikte på å øke olje- og gassproduktiviteten ved å overvåke og forutsi tilstanden til lastpumper med maskinlæringsteknikker.

Den digitale transformasjonen av olje- og gassindustrien er drevet av lavkostsensorer og høyytelses databehandling med distribuerte systemer for å trekke ut høyverdiinformasjon fra big data, direkte ved datakilden (Edge Intelligence). Den flerdimensjonale verdien og de relativt lave kostnadene til kameraer tillater videoanalyse i stor skala uten behov for å koble til fysiske sensorer.

Automatisk gjenkjenning av analoge instrumenter

Datasyn kan brukes til å lese analoge målere på kraftstasjoner og annet utstyr. Kameraer med datasyn brukes til å automatisk lese av oljenivåmålere, viklingstemperaturmålere og SF6-gasstetthetsmålere (finnstudere her).

Derved bruker synsalgoritmer fargesegmentering for å oppdage posisjonen til pekerne og skalamerkene. Slike applikasjoner fungerer mye raskere og mer nøyaktig enn mennesker og bidrar til å unngå farlige ulykker og dyre produksjonsavbrudd.

High-value Applications of Computer Vision in Oil and Gas (2023) - viso.ai (3)

Wireline Spooling Automation Med Computer Vision

I olje- og gassindustrien brukes ledninger for brønnintervensjon og reservoarevaluering. Mens verktøystrengen hentes fra brønnen, spoles wireline-kabelen, typisk under spenning, på en trommel. Feil spoling kan forårsake alvorlig kabelskade.

(Video) ABCD-MAP 15th Session 2023 | Benefits and Challenges of Coconut Oil: An Update

Nye datasynsapplikasjonerhar blitt implementertfor å oppdage spool-avvik (Inception-V3-basenettverk) og forutsi kabelposisjonen i sanntid (VGG-19 nettverk).

Lekkasjedeteksjon med datasyn

Maskinsyn brukes til å oppdage metangassutslipp ved bruk av vanlige infrarøde kameraer. For eksempel en brukssak for dyplæringsbasert metandeteksjonble nylig utviklet. Den automatiserte tilnærmingen forenkler lekkasjedeteksjonsanalysen med svært høy nøyaktighet, så høy som 95-99 %.

Tradisjonelle metoder for optisk gassavbildning (OGO) for å oppdage metanlekkasjer er arbeidskrevende og kan ikke gi lekkasjedeteksjonsresultater uten vurdering fra en menneskelig operatør. Datasynsmetoder for optisk gassavbildning medkonvolusjonelle nevrale nettverk(CNN) krever trening med metanlekkasjebilder for å aktivere automatisk deteksjon.

Korrosjonsdeteksjon med dyplæringsmodeller

Korrosjon er en stor defekt i strukturelle systemer; det har en betydelig økonomisk innvirkning og kan utgjøre sikkerhetsrisiko hvis den ikke blir behandlet. Inspeksjonsoppgaver som må utføres med jevne mellomrom, utføres ofte manuelt, noen ganger under farlige forhold.

I tillegg er den manuelle tolkningsprosessen vanligvis svært kostbar, tidkrevende og subjektiv. Derfor analyserer dyplæringsmetoder videobildene til kameraer for å automatisere inspeksjonsoppgaver.

En nøkkelindikator under inspeksjoner er tilstedeværelsen av korrosjon. Derfor har datasyn værtvellykket brukti brukstilfeller for automatisk rustdeteksjon. Dette fører til kostnadsbesparelser og raskere, bedre beslutningstaking av forebyggende eller korrigerende tiltak basert på kvantitativ innsikt i stor skala.

High-value Applications of Computer Vision in Oil and Gas (2023) - viso.ai (4)

Geologisk vurdering og AI-støttet leting

Datasynsverktøy brukes til steintyping basert på bilder av steinprøver hentet fra brønnene. Derfor,dype nevrale nettverk(DNN) brukes. Tradisjonelle metoder for petrofysisk tolkning er tidkrevende, og resultatene avhenger sterkt av den menneskelige eksperten (subjektivitet).

(Video) 7 Engine Oil Myths Stupid People Fall For

I tester erML-modellens nøyaktighet var 92 %sammenlignet med manuell tolkning og omtrent 1000 ganger raskere enn den manuelle metoden. Interessant nok fant studien at den andre manuelle tolkningen viste en nøyaktighet på 91 % sammenlignet med en annen manuell tolkning.

Dette viser hvordan AI-metoder er den åpenbare måten å akselerere prosessen og, enda mer kritisk, utelukke subjektivitet i tolkningsprosessen.

Intelligent branndeteksjon med AI Vision

Brann er en av de alvorligste ulykkesårsakene som kan føre til skader, betydelig produksjonstap og skade på utstyr. Tradisjonell branndeteksjon ble utført av menneskelige operatører gjennom videokameraer, spesielt i petroleums- og kjemiske anlegg. Imidlertid er det nesten umulig for menneskelige operatører å oppdage branner i tide med hundrevis av videokameraer installert i storskala omgivelser. Menneskelig subjektivitet, distraksjon og visuell persepsjon begrenser nøyaktigheten til menneskelige sikkerhetsveiledere.

Intelligent branndeteksjon bruker datasynsmetoder på videoen av kameraer for å oppdage branner. Metoden bruker bakgrunnssubtraksjon for å oppdage bevegelse og redusere beregningsmessig kompleksitet. Objektdeteksjons- og bildeklassifiseringsmodelleneutføre branndeteksjon med en hastighet på 98,4 %, med en falsk alarmfrekvens på 99,9 %, ved 27,4 ms deteksjonstid per bilde.

Konklusjon

I dag ser vi bare begynnelsen på æraen med AI-drevne applikasjoner. Edge AI gjorde det mulig å flytte AI-synsfunksjoner fra skyen til feltet, noe som muliggjorde store applikasjoner. På grunn av den strategiske betydningen og de distinkte operasjonelle arbeidsflytene, har de fleste olje- og gasselskaper som mål å bygge og drifte sine egnedatasynssystemer.

Nye applikasjoner for datasyn i olje- og gassindustrien har primært som mål å forbedre vedlikehold, sikkerhet, ledelse, livssyklusbærekraft, kvalitet og operasjonell effektivitet.

For å finne relaterte applikasjoner, sjekk ut vår bransjerapport om datasyn ienergi- og forsyningsindustriens applikasjoner.

(Video) Equity and Access in Public and Private Spaces | GEEX Flame Affinity Group

Hvordan komme i gang

Hvis organisasjonen din er på utkikk etter en full-stack datasynsplattform for å bygge, distribuere og overvåke tilpassede og bedriftsklassede datasynsapplikasjoner, sjekk utFull suite. Viso-plattformen utnytter de nyeste Edge AI-teknologiene med verktøy uten kode og lavkode for å akselerere bygging og drift av store dyplæringssystemer.

Ta kontakt med salgog få en personlig demo.

FAQs

What are the applications of AI in oil and gas? ›

Smart inventory, procurement, and supply chain management

AI, machine learning, smart track-and-trace technologies, and cloud networks help the oil and gas industry augment enterprise resource planning (ERP) and optimize inventory, logistics, and warehouse management.

Which is an example of computer vision based AI application? ›

Faceapp relies on computer vision to recognize patterns. Its artificial intelligence capabilities have enabled it to imitate images with increasing efficiency over time, using the data it receives from numerous sources. Faceapp transfers facial information from one picture to another at the micro-level.

What are the applications of computer vision in artificial intelligence? ›

Computer vision is a field of AI that trains computers to capture and interpret information from image and video data. By applying machine learning (ML) models to images, computers can classify objects and respond—like unlocking your smartphone when it recognizes your face.

How does AI help oil and gas industry? ›

The oil and gas industry is benefiting from AI technology, which is being used to save lives, improve safety, monitor the environment, facilitate disaster response efforts, and provide decision-making support for operators.

What are three types applications of machine learning in oil and gas? ›

There are several areas where machine learning can be applied to help improve oil and gas industry workflows, including:
  • Real-time drilling.
  • Reservoir engineering.
  • Oil and gas production and procurement.
  • Downtime prevention.
  • Well testing.
  • Geophysical analysis.
  • And more.

What are the popular five application of AI? ›

Automation, chatbots, adaptive intelligence, algorithm trading, and ML are all used in financial activities. Several banks already use AI-based systems or software to provide customer service and identify abnormalities and fraud.

What is the most popular application of computer vision? ›

This industry's most popular computer vision applications.
  • Self-driving cars. ...
  • Pedestrian detection. ...
  • Parking occupancy detection. ...
  • Traffic flow analysis. ...
  • Road condition monitoring. ...
  • X-Ray analysis. ...
  • CT and MRI. ...
  • Cancer detection.
Apr 27, 2023

What is an example of visual AI? ›

One of the most well-known applications of visual AI is facial recognition, which is used in security systems, social media, and even in some retail stores. Other applications include object detection and tracking, which can be used in self-driving cars, security cameras, and surveillance systems.

What are some examples of vision systems using AI? ›

Some of the most notable machine vision systems and application examples that exist today include:
  • Drone monitoring of crops.
  • Yield monitoring.
  • Smart systems for classifying and sorting crops.
  • Automatic pesticide spraying.
  • Weather records.
  • Forest information.
  • Smart Farming.
  • Crop field security.
Aug 12, 2021

What are the four applications of computer vision? ›

3D model Building using Computer vision. Cancer Detection using Computer Vision. Plant Disease Detection using Computer Vision. Traffic Flow Analysis.

What is computer vision in energy industry? ›

Foreign Object Detection

A computer vision application can conduct the automated detection of foreign objects that can cause failures of power supplies. General inspection of the substation with AI vision can be carried out to constantly detect and check the cleanliness and work quality of maintenance work.

What is the difference between AI and computer vision? ›

It's different from artificial intelligence because computer vision is used to process images with a set of general rules. At the same time, AI is a field where machines can learn to perform complicated tasks for themselves. For example, consider object recognition.

What is computer vision in oil and gas? ›

Computer vision can be used to read analog gauges at power substations and other equipment. Cameras with computer vision are used to automatically read oil level gauges, winding temperature gauges, and SF6 gas density gauges (find the study here).

How AI can be the tool that transforms oil and gas for the future? ›

By embracing AI, oil and gas companies can refocus employees on new ways of thinking and working. At their core, oil and gas companies are process-driven. From upstream to downstream, every step of the value chain is organized by rules and regulations designed to achieve a safe and efficient working environment.

How are robots used in the oil and gas industry? ›

Robots have applications across the oil and gas industry in a wide variety of tasks, including surveys, material handling, construction, inspection, repair, and maintenance. They can be customized for various tasks to ease the work and improve efficiency.

What are the three types of machine learning in AI? ›

The three machine learning types are supervised, unsupervised, and reinforcement learning.

What is machine learning guide for oil and gas using Python data? ›

Machine Learning Guide for Oil and Gas Using Python: A Step-by-Step Breakdown with Data, Algorithms, Codes, and Applications delivers a critical training and resource tool to help engineers understand machine learning theory and practice, specifically referencing use cases in oil and gas.

What are the major applications of machine learning in energy system? ›

Machine learning can improve durability and balance, particularly for renewable energy grids. Energy Demand Prediction- Energy demand forecasting is another potential use of machine learning algorithms in the energy industry. This is achieved by monitoring how each customer's daily energy consumption varies over time.

What is the most advanced AI to use? ›

AlphaGo is considered to be one of the most intelligent AI systems in the industry due to its advanced capabilities and its ability to learn and adapt over time. Here are some of the key features that make it so powerful: AlphaGo applies deep learning algorithms to analyze and understand the game of Go.

What is the most advanced AI? ›

GPT-3 is said to be one of the most advanced language models ever made, trained on terabytes of data containing 175 billion parameters, compared to Turing NLG by Microsoft has 17 billion parameters.

Which platform is best for computer vision? ›

Top Computer Vision Tools
  • OpenCV. A software library for machine learning and computer vision is called OpenCV. ...
  • Viso Suite. ...
  • CUDA. ...
  • MATLAB. ...
  • Keras. ...
  • SimpleCV. ...
  • BoofCV. ...
  • CAFFE.
Sep 8, 2022

What is the largest application of machine vision in industry? ›

1. GUIDANCE. Machine vision guidance has numerous useful applications in the manufacturing industry. For the most part, it involves locating a specified part and ensuring proper placement and positioning so that production runs seamlessly and with minimum errors and downtime.

What are 3 different examples of AI doing things today? ›

Artificial Intelligence Examples
  • Manufacturing robots.
  • Self-driving cars.
  • Smart assistants.
  • Healthcare management.
  • Automated financial investing.
  • Virtual travel booking agent.
  • Social media monitoring.
  • Marketing chatbots.

What is a real life example of computer vision? ›

In the security industry, Computer Vision is used for facial recognition and pattern detection. Police departments use the technology to survey urban environments, analyze the behavior of large crowds, detect suspicious activity and identify potential threats before they materialize.

Which industry uses computer vision? ›

Applications of Computer Vision

Computer Vision has a massive impact on companies across industries, from retail to security, healthcare, construction, automotive, manufacturing, logistics, and agriculture.

What are the three types of computer vision? ›

Different types of computer vision include image segmentation, object detection, facial recognition, edge detection, pattern detection, image classification, and feature matching.

What is the future scope of computer vision? ›

Among growth areas for computer vision, we can expect to see edge computing, healthcare, LiDAR (mapping), retail, health and safety, and autonomous driving. In all of these areas, computer vision will be used to detect and analyze a growing stream of data.

What is computer vision for plant science? ›

Computer vision approaches are required to extract plant phenotypes from images and automate the detection of plants and plant organs for automated weeding or harvest. The lack of robust automated image-based phenotyping methods is widely recognized as the major obstacle to ensuring global food security.

What is computer vision in IOT? ›

Computer vision uses artificial intelligence to “see” and interpret visual data and can be deployed in cameras, edge servers, or the cloud.

How many companies use computer vision? ›

However, a 2021 IDG/Insight survey found that while only 10% of organizations are currently using computer vision, 81% are in the process of investigating or implementing the technology.

Is computer vision under deep learning? ›

Furthermore, computer vision could be defined as a subset of deep learning. Instead of processing simulated data or statistics, however, computer vision breaks down and interprets visual information. Significantly, computer vision isn't necessary in many applications of machine learning.

Is computer vision better than machine learning? ›

Machine learning has improved computer vision regarding tracking and recognition. Additionally, it offers effective techniques for data acquisition, digital image processing, and data object focus - techniques that are all used within computer vision.

Do I need deep learning for computer vision? ›

Computer vision algorithms analyze certain criteria in images and videos, and then apply interpretations to predictive or decision making tasks. Today, deep learning techniques are most commonly used for computer vision.

What type of computers are used in the oil and gas industry? ›

Vector computers are being used in petroleum engineering to simulate the flow of oil and gas in a reservoir, the faster performance of the vector machines mak ing many, heretofore, unmanageable calculations possible.

What is a typical computer vision pipeline? ›

A Computer Vision Pipeline is a series of steps that most computer vision applications will go through. Many vision applications start by acquiring images and data, then processing that data, performing some analysis and recognition steps, then finally performing an action.

What is computer vision in simple words? ›

Computer vision is a field of artificial intelligence that trains computers to interpret and understand the visual world. Using digital images from cameras and videos and deep learning models, machines can accurately identify and classify objects — and then react to what they “see.”

What companies are AI in oil and gas? ›

According to GlobalData's thematic research report, Artificial Intelligence (AI) in Oil & Gas, leading adopters of AI include Shell, BP and ExxonMobil.

Why is it challenging for AI to predict oil prices? ›

Crude oil price market prediction is known for its obscurity and complexity. Due to its high vacillation degree, unpredictable irregularity events, and the complex correlations involved between the factors in the market, it is indeed difficult to predict the movements of the crude oil price. E. Panas et.

Is AI in oil and gas for safety? ›

The implementation of AI in the oil and gas industry is expected to bring significant benefits, including but not limited to: a) Enhanced safety: AI-powered solutions can help in identifying potential hazards for prevention of incidents and accidents, thereby minimizing risks to workers and the environment.

What are five 5 uses of robots in industry and society? ›

Five little known uses for robots: (1) explosives handling by explosives manufacturers and also by armed forces that must dispose or handle them; (2) using lasers on robotic arms to strip paint from air force plans; (3) having a robot scale the heights of a dam or nuclear chimney to inspect and analyze the concrete; (4 ...

Can RPA be implemented in oil and gas industry? ›

RPA can transform how work is done, whether it is your back-office, front-office or in the field – streamlining processes and improving outcomes across your organization and the oil and gas industry.

What is the industrial IoT in oil & gas use cases? ›

Employing IoT helps optimize maintenance schedules there to avoid unnecessary visits of technicians while ensuring maximum equipment health. Hazard management. IoT solutions monitor the presence of flammable gases and toxic vapors in the atmosphere and help prevent gas leackage or oil spills.

What are the application of AI in energy industry? ›

AI in energy contributes to the real-time monitoring of power grids, more accurate predictions of power fluctuations, and the development of new strategies to work with geothermal energy sources.

What are the 4 major categories of AI? ›

4 main types of artificial intelligence
  • Reactive machines. Reactive machines are AI systems that have no memory and are task specific, meaning that an input always delivers the same output. ...
  • Limited memory. The next type of AI in its evolution is limited memory. ...
  • Theory of mind. ...
  • Self-awareness.
May 17, 2023

What are the top 3 technology direction of AI? ›

In this article, I will explain three major directions of artificial intelligence technology, that are speech recognition, computer vision, and natural language processing.

What is digital twin in oil and gas? ›

A digital twin is a virtual representation of a real-time digital equivalent such as a physical object or process. They help to detect, prevent, predict, and optimise physical environment through AI, real-time analytics, visualisation, and simulation tools.

What will be the impact of AI in 2050? ›

We already have genetically edited babies, a trend that could be quite pronounced by 2050. AI will treat, and largely eliminate, neurological disorders like Alzheimer's, Parkinson's, most birth defects, and spinal cord injuries as well as blindness and deafness.

What is an example application of strong AI? ›

Here are some examples: Self-driving cars: Google and Elon Musk have shown us that self-driving cars are possible. However, self-driving cars require more training data and testing due to the various activities that it needs to account for, such as giving right of way or identifying debris on the road.

How artificial intelligence will revolutionize the energy industry? ›

AI-based deep learning models have the potential to automate the optimisation process of energy grids by analysing heaps of historic and real-time data, acting independently upon the output, and using feedback loops to self-learn and become even more accurate.

What are examples of AI in renewable energy? ›

AI can be used to optimize the recycling of materials used in clean energy systems, such as solar panels, wind turbines, and hydroelectric dams, by identifying the most valuable materials in these systems and then determining the most efficient recycling processes.

Videos

1. Oil promises – how oil changed a country | DW Documentary
(DW Documentary)
2. ILOC 2023 | Partnering with Your Community: One Interaction at a Time
(State Library of Iowa Continuing Education)
3. P & ID Diagram. How To Read P&ID Drawing Easily. Piping & Instrumentation Diagram Explained.
(Instrumentation Academy)
4. PHARMA TechOps 2022 | Achieving a Sustainable Digitalization of Asset Management/Janssen
(we.MEDIA – The Content Delivery Network)
5. Jack Dongarra at GYSS 2023 – An Overview of High-Performance Computing
(National Research Foundation Singapore)
6. What is Saudi Aramco? | CNBC Explains
(CNBC International)

References

Top Articles
Latest Posts
Article information

Author: Chrissy Homenick

Last Updated: 08/22/2023

Views: 5333

Rating: 4.3 / 5 (54 voted)

Reviews: 85% of readers found this page helpful

Author information

Name: Chrissy Homenick

Birthday: 2001-10-22

Address: 611 Kuhn Oval, Feltonbury, NY 02783-3818

Phone: +96619177651654

Job: Mining Representative

Hobby: amateur radio, Sculling, Knife making, Gardening, Watching movies, Gunsmithing, Video gaming

Introduction: My name is Chrissy Homenick, I am a tender, funny, determined, tender, glorious, fancy, enthusiastic person who loves writing and wants to share my knowledge and understanding with you.